.punbb .post-sig { font: 14px; }

Поговорим за жизнь

Информация о пользователе

Привет, Гость! Войдите или зарегистрируйтесь.


Вы здесь » Поговорим за жизнь » Россия при царях » Если ближе к Луне значит всё время со звёздами.


Если ближе к Луне значит всё время со звёздами.

Сообщений 1 страница 5 из 5

1

Обновление для «Ангара-А5В»: Россия сделала важный задел для полета на Луну

http://sd.uploads.ru/t/hXCQu.jpg

«Роскосмос» произвел модернизацию космического оборудования, необходимого для успешного полета к спутнику Земли.

В госкорпорации «Роскосмос» произвели новую систему телеметрии. Теперь, согласно заявлению из ГК, в распоряжении российских космонавтов появится модернизированное оборудование нового поколения. Примечательно, что бортовая «телеметрия» РФ будет унифицирована для целой линейки отечественных ракетоносителей.

Также стоит отметить, что новые космические системы стали более надежны, дешевле в производстве и полностью независимы от иностранных поставщиков. В первую очередь новую систему телеметрии планируется, устанавливать на уже существующие ракеты, однако в будущем все перспективные ракеты РФ также получат передовое оборудование.

В данном контексте можно с уверенностью говорить о том, что «Ангара-А5В», которую планируют использовать для полетов на Луну, также будет оснащена улучшенной телеметрической системой. Примечательно, что в разработке «Роскосмоса» предусмотрена относительная «гибкость» оборудования. Благодаря тому, что новая система набирается из отдельных блоков, она может быть подогнана под любые задачи и космический аппарат, что делает ее идеальным «кандидатом» для полета на Луну.

Наталья Овсянникова

...
Источник: https://newinform.com/67572-obnovlenie- … ta-na-lunu

2

Смертельные излучения
Смертельные излучения за магнитосферой опровергают мифы о полётах на Луну

http://s5.uploads.ru/t/bDsjA.jpg

Для определения доз радиации при полете на Луну мы рассмотрели солнечный ветер и потоки протонов и электронов; солнечные вспышки, которые во время максимумов активности вместе с рентгеновским излучением Солнца резко повышают радиационную опасность для космонавтов; галактические космические лучи (ГКЛ), как наиболее высокоэнергетическую составляющую корпускулярного потока в межпланетном пространстве (150—300 мбэр в сутки); также коснулись радиационного пояса Земли (РПЗ). Было указано, что для космонавтов РПЗ один из наиболее опасных факторов на трассе сообщений Земля-Луна.

Определим дозы радиации при прохождение радиационных поясов, а так же учтем радиационную опасность солнечного ветра. Воспользуемся общепринятой моделью радиационного пояса Земли AP-8 min (1995 г.).

http://s0.uploads.ru/LceJK.jpg

Протонная составляющая радиационного пояса земли

На рис. 1 приведено распределение протонов различных энергий в плоскости геомагнитного экватора. По оси абсцисс отложен параметр L в радиусах Земли, по оси ординат – плотность потока протонов в см-2 с-1. На этом рисунке представлены усредненные по времени значения плотности потоков протонов по данным советских и зарубежных авторов, относящиеся к периоду I96I-I975 гг [48].

http://sh.uploads.ru/xFKRy.jpg

Рис. 1. Усредненные по времени профили плотности потоков протонов в плоскости геомагнитного экватора (цифры у кривых соответствуют нижнему пределу энергии протонов в МэВ).

На рис. 2 приведены результаты последних исследований состава и динамики протонной составляющей радиационного пояса Земли, выполненных на искусственных спутниках Земли и орбитальных станциях [50].

http://s6.uploads.ru/EwWot.jpg

Рис. 2. Распределение интегральных потоков протонов в плоскости геомагнитного экватора. L – расстояние от центра Земли, выраженное в радиусах Земли. (Цифры у кривых соответствуют нижнему пределу энергии протонов в МэВ).

http://s7.uploads.ru/YUvli.jpg

Рис. 3. Меридиональное сечение радиационного пояса Земли и места приводнения Аполлонов. Оболочки L = 1-3 – внутренняя часть пояса РПЗ; L = 3,5-7 – внешняя часть РПЗ; L равен радиусу Земли. Красными точками обозначены места приводнения Аполлон 8, 10, 11, 12, 13, 14, 15, 16, 17, находящиеся вблизи геомагнитного экватора.

Воспользуемся формулой для расчета эквивалентной дозы радиации за единицу времени, которую человек получает в Космосе для кожи и внутренних органов в зависимости от толщины внешней защиты и ионизирующего излучения. В таблице 1 приведены эквивалентные дозы радиации, которые получает астронавт при двукратном прохождении внутреннего протонного РПЗ, находясь в командном модуле Apollo (7,5 г/см2).

Табл. 1. Эквивалентные дозы радиации, полученные кожей и внутренними органами астронавта с учетом защиты командного модуля Apollo при прохождении внутреннего протонного РПЗ.

http://se.uploads.ru/XzbUF.jpg

* Более точный расчёт дозы радиации связан с учётом пика Брэгга; увеличит значение дозы радиации в 1,5-2 раза.

http://s1.uploads.ru/ib92r.jpg

Во время магнитных бурь наблюдаются значительные вариации высокоэнергетичных протонов. Появление нового мощного пояса протонов на L~2.5 было зарегистрировано на ИСЗ CRRES 24 марта 1991 г..

В момент гигантского внезапного импульса геомагнитного поля на L~2.8 сформировался новый пояс протонов, эквивалентный стабильному внутреннему поясу, имеющему максимум на L~1.5. На рис. 4. показаны радиальные профили радиационных поясов для протонов с Ер=20-80 МэВ и электронов с Ее>15 МэВ, построенные по данным измерений на ИСЗ CRRES до события 24 марта 1991 г. (день 80), через три дня после образования нового пояса (день 86) и через ~6 месяцев (день 257).  Видно, что потоки протонов расширились более чем в два раза, а потоки электронов с Ее>15 МэВ превысили спокойный уровень почти на три порядка величины. В дальнейшем они регистрировались до середины 1993 г.

Аполлонам 17 (последняя высадка на Луну) за полгода до старта предшествовало три мощных магнитных шторма – 17-19 июня, 4-8 августа после мощного солнечно-протонного события, 31 октября по 1 ноября 1972 гг.. Это же касается Аполлона 8 (первый облёт Луны с человеком на борту), которому предшествовал мощный магнитный шторм за два месяца, 30-31 октября 1968 гг.. Очевидно, следовало ожидать значительное расширение протонного пояса и увеличение дозы радиации до 10 Зивертов. Это смертельная доза радиации для человека.

Для потоков протонов существует высотный ход интенсивности протонов, который может быть записан в виде:

J(B) = J(Bэ)(BЭ/B)n

где В и Вэ – напряженность магнитного поля в искомой точке и на экваторе, a J(В) и J(Вэ) – интенсивности как функции В и Вэ; n=1,8-2 [50].

Например, для протонов в плоскости геомагнитного экватора на широтах λ~30° (В/Вэ=3) и λ~44° (В/Вэ=10) значение доз радиации протонной составляющей уменьшится, соответственно, в 10 и 100 раз. И если на траектории Земля-Луна полёт по легенде НАСА проходил выше геомагнитной широты 30 градусов, тогда, согласно универсальному высотному ходу интенсивности потоков протонов, дозы радиации можно уменьшить на порядок.

Однако, возвращение на Землю и приводнение было вблизи геомагнитного экватора (Аполлон 12 и Аполлон 15 – 0-2 градуса северной геомагнитной широты, с учётом ежегодного смещения магнитных полюсов). Дозы радиации будут соответствовать максимальным значениям. Прохождение протонного радиационного пояса Земли вызывает эффект на три порядка выше официальных доз радиации для Аполлонов.

Результатом является острая лучевая болезнь, старт к Луне по схеме НАСА после магнитных штормов – это 100% летальный исход. Реальные полученные дозы радиации будут много выше, чем официальные НАСА. Очевидно, высадка американцев – это придуманная легенда. К сожалению, данная очевидность, требует самых основательных и самых упорных доказательств. Ибо слишком многим недостаёт глаз, чтобы видеть её (Ф. Ницше).

Электронная составляющая радиационного пояса земли

Внешний пояс радиации открыт советскими учеными, расположен на высотах от 9000 до 45000 км. Он намного шире внутреннего (распространяется на 50° к северу и на 50° к югу от экватора). Электронная компонента радиационных поясов испытывает значительные пространственные и временные вариации в зависимости от трех параметров: местного времени, уровня геомагнитного возмущения и фазы цикла солнечной активности.

Максимальная поглощённая доза, создаваемая внешним поясом за один час, может составить громадную величину — до 100 Грей. Проблема защиты от радиации внешнего пояса менее сложная, чем проблема защиты от радиации внутреннего пояса. Внешний пояс состоит в основном из электронов невысокой энергии, от которых защищают обычные материалы обшивки космического корабля.

Однако, при такой защите создается жесткое и мягкое рентгеновское излучение (эффект "рентгеновской трубки"). Рентгеновское излучение является ионизирующим и глубоко проникающим при прочих равных условиях для других видов излучения. Полёт через радиационный пояс на пути к Луне и обратно длится около 7 часов. Аполлон 13 по легенде НАСА вовсе "возвращался" в лунном модуле с толщиной защиты в пять раз меньше, чем для командного модуля. В течении этого времени излучение воздействует на ткани живых организмов, может быть причиной лучевой болезни, лучевых ожогов и злокачественных опухолей, наконец, является мутагенным фактором.

Воспользуемся следующими данными и оценим дозы радиации

Ниже представлены усредненные по времени и по всем значениям долготы профили интегральной интенсивности электронов различных энергий для (а) – минимума солнечной активности, (б) – для эпохи максимума [48].

http://s3.uploads.ru/LlJuN.jpg

Рис. 4. Усредненные во времени и по всем значениям долготы профили интенсивности электронов различных энергий на геомагнитном экваторе. Цифры у кривых соответствуют энергии электронов в МэВ. (а) и (б) – для эпох минимума и максимума солнечной активности.

Рисунок показывает, что в эпоху максимума солнечной активности доза радиации, создаваемая внешним поясом, возрастает в 4-7 раза. Напомним, что 1969 – 1972 был год пика 11-летней солнечной активности. Как и для протонов, для электронной составляющей РПЗ существует универсальный высотный ход, n=0,46 [50]. Высотный ход для электронов менее критичен, чем для протонов. Например, для электронов на широтах λ~30° (В/Вэ=3) и λ~44° (В/Вэ=10) значение доз радиации электронной составляющей уменьшится, соответственно, в 1,7 и 3,1 раз. Это значит, что по схеме НАСА полёта к Луне и возвращения на Землю Аполлоны никак не могут миновать электронную составляющую РПЗ. Результаты расчета дозы радиации и используемые характеристики электронной составляющей РПЗ приведены в таблице 2.

Табл. 2. Характеристика электронной составляющей РПЗ, эффективный пробег электронов в Al, время пролета РПЗ Аполлонами к Луне и при возвращении на Землю, отношение удельных радиационных и ионизационных потерь энергии, коэффициенты поглощения рентгеновских лучей для Al и воды, эквивалентная и поглощенная доза радиации*.

http://s0.uploads.ru/gNayF.jpg

Результаты показывают, что обычная защита КА в тысяч раз снижает радиационное воздействие электронной компоненты радиационных поясов. Полученные значения дозы радиации не опасны для жизни космонавтов. Основной вклад в дозы радиации вносят электроны с энергией 0.3-3 МэВ, которые генерируют жесткое рентгеновское излучение.

Отметим обстоятельство, что радиационный эффект на 1-2 порядка выше, чем даёт официальный доклад НАСА для миссий Аполлонов. Так для Аполлон 13значение поглощенной дозы составляет 0,24 рад. Расчёт даёт значение ~34,5 рад, это в 144 раз больше. При этом радиационный эффект увеличивается почти в два раза при уменьшении эффективной защиты с 7,5 до 1,5 г/см2, тогда как доклад НАСА указывает на обратное. Для Аполлон 8 и Аполлон 11 официальные дозы радиации составляют, соответственно, 0,16 и 0,18 рад.

Расчет дает 19,4 рад. Это в 121 и 108 раз меньше, соответственно. И только для Аполлон 14 официальные дозы радиации составляют 1,14 рад, что в 17 меньше расчетного. Для электронной составляющей РПЗ существует сезонные вариации. На рис. 5 представлены потоки релятивистских электронов за один пролет пояса по данным ИСЗ ГЛОНАСС и геомагнитные индексы Кр и Dst за 1994-1996 гг. Жирные линии представляют результаты сглаживания измерений. Представленные данные демонстрируют хорошо заметные сезонные вариации: потоки электронов весной и осенью в 5-6 раз больше минимальных – зимой и летом.

http://sf.uploads.ru/QO3Zp.jpg

Рис. 5. Временной ход проинтегрированных за пролет спутника ГЛОНАСС через радиационный пояс потоков электронов с энергией 0.8-1.2 МэВ (флюенсов) за период с июня 1994 г. по июль 1996 г. Приведены также индексы геомагнитной активности: суточный Кр- индекс и Dst-вариация. Жирные линии – сглаженные значения флюенсов и Кр-индекса.

Запуск и посадка Аполлон 13 состоялись весной, соответственно, 11.04.1970 и 17.04.1970. Очевидно, потоки электронов будут в несколько раз выше, чем усредненные. Это значит, что значение поглощенной дозы радиации вырастит в несколько раз и составит 43-52 рад. Это в 200 раз больше официальных данных. Аналогично, для Аполлон 16 (запуск и посадка, соответственно, 16.04.1972 и 27.04.1972) доза радиации составит 25-30 рад. Во время магнитных бурь происходит изменение интенсивности электронов в РПЗ иногда в 10-100 раз и более в эпоху максимума солнечной активности. В этом случае дозы радиации могут возрасти до опасных значений для жизни космонавтов и составить 10 Зивертов и более. Как правило, в эти периоды преобладает инжекция частиц, особенно при сильных магнитных возмущениях. На рис. 6 приведены профили интенсивности электронов различных энергий в спокойных условиях (рис. 6а) и через 2 дня после магнитной бури 4 сентября 1966 года (рис. 6б) [48].

http://se.uploads.ru/6KmUO.jpg

Рис. 6. Профили потоков электронов в спокойных условиях за шесть дней до бури (а) и спустя два дня после магнитной бури (б). Цифры у кривых-энергий электронов в кэВ.

Одним из полетов к Луне по отчёту НАСА был Аполлон 14: Алан Шепард, Эдгар Митчелл, Стюарт Руса 31.01.1971 — 09.02.1971 GMT / 216:01:58 Третья высадка на Луну: 05.02.1971 09:18:11 — 06.02.1971 18:48:42 33 ч 31 мин / 9 ч 23 мин 42.9.

27 января за несколько дней до старта Аполлон началась умеренная магнитная буря, перешедшая в малую бурю 31 января [49], которые вызвала солнечная вспышка в направлении к Земле 24.01.1971 гг.. Очевидно, повышение уровня радиации можно ожидать в 10-100 раз или 1-10 Зивертов (100-1000 рад). В случае дозы радиации 10 Зивертов радиационный эффект при полете через пояс Ван-Алена – 100% летальный исход.

http://sg.uploads.ru/dwsFM.jpg

Рис. 7 Результат воздействия радиации. Хиросима и Нагасаки.

http://s9.uploads.ru/l8x5s.jpg

Итогами полета Аполлон 14 было:

1) продемонстрирована отличная физическая подготовка и высокая квалификация астронавтов, в частности — физическая выносливость Шепарда, которому на момент полёта было 47 лет;
2) никаких болезненных явлений у астронавтов не наблюдалось;
3) Шепард прибавил в весе полкилограмма (первый случай в истории американской пилотируемой космонавтики);
4) за время полёта астронавты ни разу не принимали медикаментов;
5) продемонстрированы преимущества исследования Луны с участием астронавтов по сравнению с полётами автоматических аппаратов…

На рис. 8 показано изменение профилей интенсивности электронов с энергией 290-690 кэВ до и после магнитной бури.

http://s5.uploads.ru/qLoSI.jpg

Рис. 8. Плотности потока электронов с энергией 290-690 кэВ для различных моментов времени на оболочках радиационного пояса Земли от 1,5 до 2,5. Цифрами у кривых обозначено время в сутках, прошедшее после инжекции электронов.

Рис. 8 показывает, что через 5 суток плотность потоков электронов с энергией 290-690 кэВ значительно расширена и в 40-60 раз выше, чем до магнитной бури, через 15 суток – в 30-40 раз выше, через 30 суток – в 5-10 раз больше, через 60 суток – в 3-5 раз больше. Только через 3 месяца электронная составляющая РПЗ приходит к равновесному состоянию. Значительные пространственные и временные изменения потоков электронов во всей области поясов в течение одного года показаны на рис. 9.

http://s6.uploads.ru/iJRrg.jpg

Рис. 9. Изменения потоков электронов c энергией >400 кэВ в радиационных поясах в течение 1 года. Оттенки серо-чёрного цвета демонстрируют изменение потока частиц: чем чернее оттенок, тем больше поток частиц. Видно, что наибольшие потоки частиц наблюдаются во время магнитных бурь (геомагнитный индекс Кр). В эти моменты времени на несколько порядков увеличивают плотность электронов между внутренней и внешней зонами радиации на расстояниях 2,5-5,5 Rз.

Как можно видеть, значительные вариации электронной составляющей РПЗ по интенсивности и по пространству относительно спокойного состояния радиационного пояса Земли занимают четверть года. Во время магнитных бурь потоки частиц значительно расширяются во внешнюю область и "сползают” ближе к Земле, заполняя ранее пустовавшие области захваченной радиации.

Резкое увеличение потоков электронов создают реальную угрозу спутникам и пилотам КА на трассе Земля-Луна, находящихся в зоне всплесков их потока. Уже отмечено довольно много случаев, когда выход из строя отдельных систем спутников или даже прекращение их функционирования связан с резким усилением потока релятивистских электронов. Мощный поток электронов с энергией в несколько МэВ, насквозь пробивает оболочку спутника, электроны с меньшей энергией генерируют огромны поток вторичного тормозного излучения, состоящего из жесткого рентгеновского излучения.

Дозы радиации в окололунном пространстве и на поверхности луны

На околоземной орбите космонавты находятся под защитой магнитосферы Земли. В окололунном пространстве или на поверхности Луны весь поток солнечного ветра принимает корпус космического аппарата или лунного модуля. Потоком протонов можно пренебречь (очевидно, кроме солнечно-протонных событий). Плотность потока электронов в солнечном ветре меняется на два-три порядка порой в течении одной только недели.

При столкновении с обшивкой корабля или модуля электроны останавливаются и рождают рентгеновское излучение, которое имеет огромную проникающую способность (толщина защиты 7,5 г/см2 алюминия уменьшит дозы радиации только в два раза). Ниже график изменения дозы радиации рад/сутки с 1996 по 2013 год, которые получает астронавт при толщина внешней защиты 1,5 г/см2:

http://s5.uploads.ru/8Rq0h.jpg

Рис. 10. Изменения дозы радиации рад/сутки с 1996 по 2013 год, которые получает астронавт при толщина внешней защиты 1,5 г/см2 в окололунном пространстве. Нелинейная шкала слева – уровни потока электронов для солнечного ветра по данным спутника ACE, нелинейная шкала справа – доза радиации в единицах рад за сутки. Горизонтальные линии отмечают уровни для сравнения: жёлтая – доза при единичной рентгенографии грудной клетки, оранжевая – доза при томографии позвонков.

Из рис. 10 видно, что дозы радиации в окололунном пространстве и на поверхности Луны носят нерегулярный характер. В год минимума солнечной активности дозы радиации составляют 0,0001 рад. В год максимума солнечной активности изменяются от 0,003 до 1 рад/сутки (прим. – для электронов бэр=рад; нерегулярность потоков электронов в солнечном ветре в годы максимальной солнечной активности связана с вспышками на Солнце, которые происходят ежедневно).

За месяц пребывания в окололунном пространстве астронавты для значения соответствующем 1-31 октября 2001 года получают дозы 0,5 рад, среднее 0,016 рад/сут; для значения соответствующем 1-30 ноября 2001 года получают дозы 3,4 рад, среднее 0,11 рад/сут; усредненное за два месяца составляет – 3,9 рад за 60 суток или 0,065 рад/сут. Это значит, что дозы радиации, полученные астронавтами 9-ти миссий только пребывания в окололунном пространстве, выше доз, заявленных НАСА и должны иметь значительные вариации.

Это противоречит данным миссий Аполлон. При более высокой плотности потока электронов, а так же при длительном пребывании вне магнитосферы Земли (100 суток), дозы могут приближаться к значениям лучевой болезни – 1,0 Зв. Дополнительно – Архив доз радиации с 1 января 2010 г. Очевидно, что данные дозы радиации суммируются с другими дозами, например, при прохождении радиационного пояса Земли, в итоге имеем те значения, которое получает астронавт при полете на Луну и возвращении на Землю.

Обсуждение

После миссий Аполлонов прошло 40 лет. До сих пор ни кто не даёт точный прогноз для геомагнитного возмущения. Говорят о вероятности геомагнитных возмущений (магнитная буря, магнитный шторм) на сутки, на несколько дней. Точность прогноза на неделю ниже 5%. Более непредсказуемый характер отмечается для электронов солнечного ветра. Это значит, что с вероятностью не ниже 20-30% астронавты миссий Аполлонов попадут в непредсказуемый мощный поток электронов радиационного пояса Земли и солнечный ветер. Полёт Аполлонов сквозь внешний РПЗ и солнечный ветер в эпоху активного солнца можно сравнить с гусарской рулеткой, когда в пустой барабан 4-зарядного револьвера заряжается один патрон! Было сделано 9 попыток. Вероятность не получить острую лучевую болезнь

http://sg.uploads.ru/t/wDfqB.jpg

Это равносильно почти 100% лучевой болезни.

Подводя итог скажем: двукратное прохождение радиационного пояса Земли по схеме НАСА приводит к смертельным дозам радиации 5 Зивертов и более во время магнитных бурь. Даже если бы Аполлонам сопутствовала фортуна:

    дозы радиации при прохождении протонной составляющей РПЗ были бы в 100 раз меньше,
    прохождение электронной составляющей РПЗ было бы при минимальном геомагнитном возмущении и низкой магнитной активности,
    низкая плотность электронов в солнечном ветре,

тогда суммарная доза радиации составит не ниже 20-30 бэр. Дозы радиации не опасны для жизни человека. Однако и в этом случае радиационный эффект на два порядка выше тех значений, которые заявлены в официальном докладе НАСА! В таблице 3 приведены суммарные и суточные дозы радиации пилотируемых полётов на космических кораблях и данные с орбитальных станций.

Таблица 3. Суммарные и суточные дозы радиации пилотируемых полётов на космических кораблях и на орбитальных станциях.

http://s8.uploads.ru/t/7cjNT.jpg

Можно отметить, что дозы радиации Аполлон 0,022-0,127 рад/сут, получаемые астронавтами при полёте на Луну, не отличаются от доз радиации 0,010-0,153 рад/сут при орбитальных полетах. Влияние радиационного пояса Земли равно нулю. Хотя настоящий расчёт показывает, что дозы радиации миссий на Луну в 100-1000 раз и более будут выше.

Можно так же отметить, что наиболее низкий радиационный эффект 0,010—0,020 рад/сут наблюдаются для орбитальной станции "МКС", имеющей эффективную защиту 15 г/см2 и находящейся на низкой опорной орбите Земли. Наиболее высокие дозы радиации 0,099—0,153 рад/сут отмечены для ОС "Скайлэб", имеющий защиту 7,5 г/см2 и осуществлявших полёт на высокой опорной орбите.

Заключение

Аполлоны не летали на Луну, они кружили на низкой опорной орбите, находясь под защитой магнитосферы Земли, имитируя полёт к Луне, и получили дозы радиации обычного орбитального полёта. В целом, истории «пребывания человека на Луне» несколько десятилетий! Полёт американцев к Луне можно сравнить с шахматной игрой. С одной стороны было НАСА, великодержавный престиж нации, политика и "адвокаты" НАСА, с другой стороны были Ральф Рене, Ю. И. Мухин, А. И. Попов и многие другие энтузиасты-оппоненты. Оппонентами было поставлено множество шахматных шахов, один из последних – "Человек на Луне. Солнце на снимках Аполлонов в 20 раз больше!" Данной статьей от имени всех оппонентов объявляется шахматный мат НАСА. Несмотря на опасность РПЗ и политику, безусловно, человечество не останется вечно на Земле…

Главным способом обойти радиационные пояса Ван-Алена является изменение схемы траектории полета к Луне и электромагнитная защита от электронов.

3

Если нашим учёным удалось придумать защиту от космического излучения - это здорово!

4

Кто знает радиация это огромная сила.

5

Почему лунные аферисты не могут сделать РД-180? Интервью академика Бориса Каторгина

18 мая 2013
Создатель лучших в мире жидкостных ракетных двигателей академик Борис Каторгин объясняет, почему американцы до сих пор не могут повторить наших достижений в этой области и как сохранить советскую фору в будущем
Почему лунные аферисты не могут сделать РД-180? Интервью академика Бориса Каторгина
21 июня на Петербургском экономическом форуме прошло награждение лауреатов премии «Глобальная энергия». Авторитетная комиссия отраслевых экспертов из разных стран выбрала три заявки из представленных 639 и назвала лауреатов премии 2012 года, которую уже привычно называют «нобелевкой для энергетиков». В итоге 33 миллиона премиальных рублей в этом году разделили известный изобретатель из Великобритании профессор Родней Джон Аллам и двое наших выдающихся ученых — академики РАН Борис Каторгин и Валерий Костюк.
Все трое имеют отношение к созданию криогенной техники, исследованию свойств криогенных продуктов и их применению в различных энергетических установках. Академик Борис Каторгин был награжден «за разработки высокоэффективных жидкостных ракетных двигателей на криогенных топливах, которые обеспечивают при высоких энергетических параметрах надежную работу космических систем в целях мирного использования космоса». При непосредственном участии Каторгина, более пятидесяти лет посвятившего предприятию ОКБ-456, известному сейчас как НПО «Энергомаш», создавались жидкостные ракетные двигатели (ЖРД), рабочие характеристики которых и теперь считаются лучшими в мире. Сам Каторгин занимался разработкой схем организации рабочего процесса в двигателях, смесеобразованием компонентов горючего и ликвидацией пульсации в камере сгорания. Известны также его фундаментальные работы по ядерным ракетным двигателям (ЯРД) с высоким удельным импульсом и наработки в области создания мощных непрерывных химических лазеров.
В самые тяжелые для российских наукоемких организаций времена, с 1991-го по 2009 год, Борис Каторгин возглавлял НПО «Энергомаш», совмещая должности генерального директора и генерального конструктора, и умудрился не только сохранить фирму, но и создать ряд новых двигателей. Отсутствие внутреннего заказа на двигатели заставило Каторгина искать заказчика на внешнем рынке. Одним из новых двигателей стал РД-180, разработанный в 1995 году специально для участия в тендере, организованном американской корпорацией Lockheed Martin, выбиравшей ЖРД для модернизируемого тогда ракетоносителя «Атлас». В результате НПО «Энергомаш» подписало договор на поставку 101 двигателя и к началу 2012 года уже поставило в США более 60 ЖРД, 35 из которых успешно отработали на «Атласах» при выводе спутников различного назначения.
Перед вручением премии «Эксперт» побеседовал с академиком Борисом Каторгиным о состоянии и перспективах развития жидкостных ракетных двигателей и выяснил, почему базирующиеся на разработках сорокалетней давности двигатели до сих пор считаются инновационными, а РД-180 не удалось воссоздать на американских заводах.
— Борис Иванович, в чем именно ваша заслуга в создании отечественных жидкостных реактивных двигателей, и теперь считающихся лучшими в мире?
— Чтобы объяснить это неспециалисту, наверное, нужно особое умение. Для ЖРД я разрабатывал камеры сгорания, газогенераторы; в целом руководил созданием самих двигателей для мирного освоения космического пространства. (В камерах сгорания происходит смешение и горение топлива и окислителя и образуется объем раскаленных газов, которые, выбрасываясь затем через сопла, создают собственно реактивную тягу; в газогенераторах также сжигается топливная смесь, но уже для работы турбонасосов, которые под огромным давлением нагнетают топливо и окислитель в ту же камеру сгорания. — «Эксперт».)
— Вы говорите о мирном освоении космоса, хотя очевидно, что все двигатели тягой от нескольких десятков до 800 тонн, которые создавались в НПО «Энергомаш», предназначались прежде всего для военных нужд.
— Нам не пришлось сбросить ни одной атомной бомбы, мы не доставили на наших ракетах ни одного ядерного заряда к цели, и слава богу. Все военные наработки пошли в мирный космос. Мы можем гордиться огромным вкладом нашей ракетно-космической техники в развитие человеческой цивилизации. Благодаря космонавтике родились целые технологические кластеры: космическая навигация, телекоммуникации, спутниковое телевидение, системы зондирования.
— Двигатель для межконтинентальной баллистической ракеты Р-9, над которым вы работали, потом лег в основу чуть ли не всей нашей пилотируемой программы.
— Еще в конце 1950-х я проводил расчетно-экспериментальные работы для улучшения смесеобразования в камерах сгорания двигателя РД-111, который предназначался для той самой ракеты. Результаты работы до сих пор применяются в модифицированных двигателях РД-107 и РД-108 для той же ракеты «Союз», на них было совершено около двух тысяч космических полетов, включая все пилотируемые программы.
— Два года назад я брал интервью у вашего коллеги, лауреата «Глобальной энергии» академика Александра Леонтьева. В разговоре о закрытых для широкой публики специалистах, коим Леонтьев сам когда-то был, он упомянул Виталия Иевлева, тоже много сделавшего для нашей космической отрасли.
— Многие работавшие на оборонку академики были засекречены — это факт. Сейчас многое рассекречено — это тоже факт. Александра Ивановича я знаю прекрасно: он работал над созданием методик расчета и способов охлаждения камер сгорания различных ракетных двигателей. Решить эту технологическую задачу было нелегко, особенно когда мы начали максимально выжимать химическую энергию топливной смеси для получения максимального удельного импульса, повышая среди прочих мер давление в камерах сгорания до 250 атмосфер. Возьмем самый мощный наш двигатель — РД-170. Расход топлива с окислителем — керосином с жидким кислородом, идущим через двигатель, — 2,5 тонны в секунду. Тепловые потоки в нем достигают 50 мегаватт на квадратный метр — это огромная энергия. Температура в камере сгорания — 3,5 тысячи градусов Цельсия. Надо было придумать специальное охлаждение для камеры сгорания, чтобы она могла расчетно работать и выдерживала тепловой напор. Александр Иванович как раз этим и занимался, и, надо сказать, потрудился он на славу. Виталий Михайлович Иевлев — член-корреспондент РАН, доктор технических наук, профессор, к сожалению, довольно рано умерший, — был ученым широчайшего профиля, обладал энциклопедической эрудицией. Как и Леонтьев, он много работал над методикой расчета высоконапряженных тепловых конструкций. Работы их где-то пересекались, где-то интегрировались, и в итоге получилась прекрасная методика, по которой можно рассчитать теплонапряженность любых камер сгорания; сейчас, пожалуй, пользуясь ею, это может сделать любой студент. Кроме того, Виталий Михайлович принимал активное участие в разработке ядерных, плазменных ракетных двигателей. Здесь наши интересы пересекались в те годы, когда «Энергомаш» занимался тем же.
— В нашей беседе с Леонтьевым мы затронули тему продажи энергомашевских двигателей РД-180 в США, и Александр Иванович рассказал, что во многом этот двигатель — результат наработок, которые были сделаны как раз при создании РД-170, и в каком-то смысле его половинка. Что это — действительно результат обратного масштабирования?
— Любой двигатель в новой размерности — это, конечно, новый аппарат. РД-180 с тягой 400 тонн действительно в два раза меньше РД-170 с тягой 800 тонн. У РД-191, предназначенного для нашей новой ракеты «Ангара», тяга и вовсе 200 тонн. Что же общего у этих двигателей? Все они имеют по одному турбонасосу, но камер сгорания у РД-170 четыре, у «американского» РД-180 — две, у РД-191 — одна. Для каждого двигателя нужен свой турбонасосный агрегат — ведь если четырёхкамерный РД-170 потребляет примерно 2,5 тонны топлива в секунду, для чего был разработан турбонасос мощностью 180 тысяч киловатт, в два с лишним раза превосходящий, например, мощность реактора атомного ледокола «Арктика», то двухкамерный РД-180 — лишь половину, 1,2 тонны. В разработке турбонасосов для РД-180 и РД-191 я участвовал напрямую и в то же время руководил созданием этих двигателей в целом.
— Камера сгорания, значит, на всех этих двигателях одна и та же, только количество их разное?
— Да, и это наше главное достижение. В одной такой камере диаметром всего 380 миллиметров сгорает чуть больше 0,6 тонны топлива в секунду. Без преувеличения, эта камера — уникальное высокотеплонапряженное оборудование со специальными поясами защиты от мощных тепловых потоков. Защита осуществляется не только за счет внешнего охлаждения стенок камеры, но и благодаря хитроумному способу «выстилания» на них пленки горючего, которое, испаряясь, охлаждает стенку. На базе этой выдающейся камеры, равной которой в мире нет, мы изготавливаем лучшие свои двигатели: РД-170 и РД-171 для «Энергии» и «Зенита», РД-180 для американского «Атласа» и РД-191 для новой российской ракеты «Ангара».
— «Ангара» должна была заменить «Протон-М» еще несколько лет назад, но создатели ракеты столкнулись с серьезными проблемами, первые летные испытания неоднократно откладывались, и проект вроде бы продолжает буксовать.
— Проблемы действительно были. Сейчас принято решение о запуске ракеты в 2013 году. Особенность «Ангары» в том, что на основе ее универсальных ракетных модулей можно создать целое семейство ракетоносителей грузоподъемностью от 2,5 до 25 тонн для вывода грузов на низкую околоземную орбиту на базе универсального же кислородно-керосинового двигателя РД-191. «Ангара-1» имеет один двигатель, «Ангара-3» — три с общей тягой 600 тонн, у «Ангары-5» будет 1000 тонн тяги, то есть она сможет выводить на орбиту больше грузов, чем «Протон». К тому же вместо очень токсичного гептила, который сжигается в двигателях «Протона», мы используем экологически чистое топливо, после сгорания которого остаются лишь вода да углекислый газ.
— Как получилось, что тот же РД-170, который создавался еще в середине 1970-х, до сих пор остается, по сути, инновационным продуктом, а его технологии используются в качестве базовых для новых ЖРД?
— Похожая история случилась с самолетом, созданным после Второй мировой Владимиром Михайловичем Мясищевым (дальний стратегический бомбардировщик серии М, разработка московского ОКБ-23 1950-х годов. — «Эксперт»). По многим параметрам самолет опережал свое время лет эдак на тридцать, и элементы его конструкции потом заимствовали другие авиастроители. Так и здесь: в РД-170 очень много новых элементов, материалов, конструкторских решений. По моим оценкам, они не устареют еще несколько десятилетий. В этом заслуга прежде всего основателя НПО «Энергомаш» и его генерального конструктора Валентина Петровича Глушко и членкора РАН Виталия Петровича Радовского, возглавившего фирму после смерти Глушко. (Отметим, что лучшие в мире энергетические и эксплуатационные характеристики РД-170 во многом обеспечиваются благодаря решению Каторгиным проблемы подавления высокочастотной неустойчивости горения за счет разработки антипульсационных перегородок в той же камере сгорания. — «Эксперт».) А двигатель РД-253 первой ступени для ракетоносителя «Протон»? Принятый на вооружение еще в 1965 году, он настолько совершенен, что до сих пор никем не превзойден. Именно так учил конструировать Глушко — на пределе возможного и обязательно выше среднемирового уровня. Важно помнить и другое: страна инвестировала в свое технологическое будущее. Как было в Советском Союзе? Министерство общего машиностроения, в ведении которого, в частности, находились космос и ракеты, только на НИОКР тратило 22 процента своего огромного бюджета — по всем направлениям, включая двигательное. Сегодня объем финансирования исследований намного меньше, и это говорит о многом.
— Не означает ли достижение этими ЖРД неких совершенных качеств, причем случилось это полвека назад, что ракетный двигатель с химическим источником энергии в каком-то смысле изживает себя: основные открытия сделаны и в новых поколениях ЖРД, сейчас речь идет скорее о так называемых поддерживающих инновациях?
— Безусловно нет. Жидкостные ракетные двигатели востребованы и будут востребованы еще очень долго, потому что никакая другая техника не в состоянии более надежно и экономично поднять груз с Земли и вывести его на околоземную орбиту. Они безопасны с точки зрения экологии, особенно те, что работают на жидком кислороде и керосине. Но для полетов к звездам и другим галактикам ЖРД, конечно, совсем непригодны. Масса всей метагалактики — 10 в 56 степени граммов. Для того чтобы разогнаться на ЖРД хотя бы до четверти скорости света, потребуется совершенно невероятный объем топлива — 10 в 3200 степени граммов, так что даже думать об этом глупо. У ЖРД есть своя ниша — маршевые двигатели. На жидкостных двигателях можно разогнать носитель до второй космической скорости, долететь до Марса, и все.
— Следующий этап — ядерные ракетные двигатели?
— Конечно. Доживем ли мы еще до каких-то этапов — неизвестно, а для разработки ЯРД многое было сделано уже в советское время. Сейчас под руководством Центра Келдыша во главе с академиком Анатолием Сазоновичем Коротеевым разрабатывается так называемый транспортно-энергетический модуль. Конструкторы пришли к выводу, что можно создать менее напряженный, чем был в СССР, ядерный реактор с газовым охлаждением, который будет работать и как электростанция, и как источник энергии для плазменных двигателей при передвижении в космосе. Такой реактор проектируется сейчас в НИКИЭТ имени Н. А. Доллежаля под руководством члена-корреспондента РАН Юрия Григорьевича Драгунова. В проекте также участвует калининградское КБ «Факел», где создаются электрореактивные двигатели. Как и в советское время, не обойдется без воронежского КБ химавтоматики, где будут изготавливаться газовые турбины, компрессоры, чтобы по замкнутому контуру гонять теплоноситель — газовую смесь.
— А пока полетаем на ЖРД?
— Конечно, и мы четко видим перспективы дальнейшего развития этих двигателей. Есть задачи тактические, долгосрочные, тут предела нет: внедрение новых, более жаростойких покрытий, новых композитных материалов, уменьшение массы двигателей, повышение их надежности, упрощение схемы управления. Можно внедрить ряд элементов для более тщательного контроля за износом деталей и других процессов, происходящих в двигателе. Есть задачи стратегические: к примеру, освоение в качестве горючего сжиженного метана и ацетилена вместе с аммиаком или трехкомпонентного топлива. НПО «Энергомаш» занимается разработкой трехкомпонентного двигателя. Такой ЖРД мог бы применяться в качестве двигателя и первой, и второй ступени. На первой ступени он использует хорошо освоенные компоненты: кислород, жидкий керосин, а если добавить еще около пяти процентов водорода, то значительно увеличится удельный импульс — одна из главных энергетических характеристик двигателя, а это значит, что можно отправить в космос больше полезного груза. На первой ступени вырабатывается весь керосин с добавкой водорода, а на второй тот же самый двигатель переходит от работы на трехкомпонентном топливе на двухкомпонентное — водород и кислород.
Мы уже создали экспериментальный двигатель, правда, небольшой размерности и тягой всего около 7 тонн, провели 44 испытания, сделали натурные смесительные элементы в форсунки, в газогенераторе, в камере сгорания и выяснили, что можно сначала работать на трех компонентах, а потом плавно переходить на два. Все получается, достигается высокая полнота сгорания, но чтобы идти дальше, нужен более крупный образец, нужно дорабатывать стенды, чтобы запускать в камеру сгорания компоненты, которые мы собираемся применять в настоящем двигателе: жидкие водород и кислород, а также керосин. Думаю, это очень перспективное направление и большой шаг вперед. И надеюсь кое-что успеть сделать при жизни.
— Почему американцы, получив право на воспроизведение РД-180, не могут сделать его уже много лет?
— Американцы очень прагматичны. В 1990-х, в самом начале работы с нами, они поняли, что в энергетической области мы намного опередили их и надо у нас эти технологии перенимать. К примеру, наш двигатель РД-170 за один запуск за счет большего удельного импульса мог вывезти полезного груза на две тонны больше, чем их самый мощный F-1, что означало по тем временам 20 миллионов долларов выигрыша. Они объявили конкурс на двигатель тягой 400 тонн для своих «Атласов», который выиграл наш РД-180. Тогда американцы думали, что они начнут с нами работать, а года через четыре возьмут наши технологии и будут сами их воспроизводить. Я им сразу сказал: вы затратите больше миллиарда долларов и десять лет. Четыре года прошло, и они говорят: да, надо шесть лет. Прошли еще годы, они говорят: нет, надо еще восемь лет. Прошло уже семнадцать лет, и они ни один двигатель не воспроизвели. Им сейчас только на стендовое оборудование для этого нужны миллиарды долларов. У нас на «Энергомаше» есть стенды, где в барокамере можно испытывать тот же двигатель РД-170, мощность струи которого достигает 27 миллионов киловатт.
Почему лунные аферисты не могут сделать РД-180? Интервью академика Бориса Каторгина
— Я не ослышался — 27 гигаватт? Это больше установленной мощности всех АЭС «Росатома».
— Двадцать семь гигаватт — это мощность струи, которая развивается относительно за короткое время. При испытаниях на стенде энергия струи сначала гасится в специальном бассейне, затем в трубе рассеивания диаметром 16 метров и высотой 100 метров. Чтобы построить подобный стенд, в котором помещается двигатель, создающий такую мощность, надо вложить огромные деньги. Американцы сейчас отказались от этого и берут готовое изделие. В результате мы продаем не сырье, а продукт с огромной добавленной стоимостью, в который вложен высокоинтеллектуальный труд. К сожалению, в России это редкий пример хайтек-продаж за границу в таком большом объеме. Но это доказывает, что при правильной постановке вопроса мы способны на многое.
Почему лунные аферисты не могут сделать РД-180? Интервью академика Бориса Каторгина
— Борис Иванович, что надо сделать, чтобы не растерять фору, набранную советским ракетным двигателестроением? Наверное, кроме недостатка финансирования НИОКР очень болезненна и другая проблема — кадровая?
— Чтобы остаться на мировом рынке, надо все время идти вперед, создавать новую продукцию. Видимо, пока нас до конца не прижало и гром не грянул. Но государству надо осознать, что без новых разработок оно окажется на задворках мирового рынка, и сегодня, в этот переходный период, пока мы еще не доросли до нормального капитализма, в новое должно прежде всего вкладывать оно — государство. Затем можно передавать разработку для выпуска серии частной компании на условиях, выгодных и государству, и бизнесу. Не верю, что придумать разумные методы созидания нового невозможно, без них о развитии и инновациях говорить бесполезно.
Кадры есть. Я руковожу кафедрой в Московском авиационном институте, где мы готовим и двигателистов, и лазерщиков. Ребята умнющие, они хотят заниматься делом, которому учатся, но надо дать им нормальный начальный импульс, чтобы они не уходили, как сейчас многие, писать программы для распределения товаров в магазинах. Для этого надо создать соответствующую лабораторную обстановку, дать достойную зарплату. Выстроить правильную структуру взаимодействия науки и Министерства образования. Та же Академия наук решает много вопросов, связанных с кадровой подготовкой. Ведь среди действующих членов академии, членов-корреспондентов много специалистов, которые руководят высокотехнологическими предприятиями и научно-исследовательскими институтами, мощными КБ. Они прямо заинтересованы, чтобы на приписанных к их организациям кафедрах воспитывались необходимые специалисты в области техники, физики, химии, чтобы они сразу получали не просто профильного выпускника вуза, а готового специалиста с некоторым жизненным и научно-техническим опытом. Так было всегда: самые лучшие специалисты рождались в институтах и на предприятиях, где существовали образовательные кафедры. У нас на «Энергомаше» и в НПО Лавочкина работают кафедры филиала МАИ «Комета», которой я руковожу. Есть старые кадры, которые могут передать опыт молодым. Но времени осталось совсем немного, и потери будут безвозвратные: для того, чтобы просто вернуться на существующий сейчас уровень, придется затратить гораздо больше сил, чем сегодня надо для его поддержания.

Быстрый ответ

Напишите ваше сообщение и нажмите «Отправить»



Вы здесь » Поговорим за жизнь » Россия при царях » Если ближе к Луне значит всё время со звёздами.


Рейтинг форумов | Создать форум бесплатно